
Testing for a Conformance Relation Based
on Acceptance*

MingYu Yao and Gregorv. Bochmann

D6partement d'informatique et de recherche ol~rationnelle,
Universit6 de Montr6al, Montr6al, Qu6bec, Canada H3C 3J7

e-mail: (yao, bochmann)@iro.umontreal.ca

Abstract. Although the object-oriented paradigm has been gaining wide
popularity in recent years, little work has been done on how to test object-
oriented software systems. We believe that many special programming
features found in the object-oriented paradigm will also play important roles
during the testing phase. In this paper, we propose a conformance testing
method for object-oriented software systems. The conformance relation that
can be tested by this method is based on a modified version of the
acceptance tree model and takes into account the special requirements
imposed by the inheritance mechanism -- which we believe is the most
important feature provided by the object-oriented paradigm. The proposed
method allows us to test, under certain assumptions, whether an object
instance implementation conforms to a given class specification by
applying to the implementation the test cases derived from the given class
specification.

1 I n t r o d u c t i o n

With the increasing complexity of software systems, stepwise refinement is becoming
an important methodology for software development. The stepwise refinement
approach starts from a formal specification of the functionality of the system on a
high level of abstraction. This abstract initial specification is then transformed in a
number of successive refinement or implementation steps, where each step produces a
new specification reflecting certain design decisions. The transformation process
terminates when a physical realization of the system is obtained. With such an
approach, implementation and specification only have relative meanings. A refinement
produced in an intermediate step is an implementation of the refinement in the
previous step, while it also serves as a specification for the refinement in the next
step. The stepwise development process must be such that the final realization, as
well as the intermediate refinements, conform to the initial specification. Certainly,
some criterion should be designated beforehand for specifying the meaning and
conditions of "conform". Actually, there have been many criteria proposed for defining
possible conformance relationships, such as trace preorder, reduction, extension and
conformance of [5, 6, 7],failure of [9, 10], and failure trace and generalized failure of
[12]. These relations have been proposed largely for conformance testing of distributed
systems, particularly of communication protocols.

* This research was supported by a grant from the Canadian Institute for Tele-
communications Research under the NCE program of the Government of Canada.

520

The object-oriented paradigm, which has been gaining wide popularity in recent years,
directly supports the stepwise refinement approach. In an object-oriented system, the
components called objects are usually organized into object classes. An object class is
a set of objects which are called its instances [2]. An object class definition specifies a
set of allowable behaviors that each object instance in that class may exhibit.
Furthermore, the inheritance mechanism allows one to define a new class (called
subclass) from existing classes (called superclasses). The subclass inherits a set of
nonconflicting behaviors specified by its superclasses. As such, the subclass is a
refinement of each superclass in the sense that certain implementation decisions -- the
elimination of conflicting behaviors, have been made in the subclass. Thus the
conformance problem also arises in object-oriented systems, such as the conformance
of a subclass to its superclasses, and the conformance of a physical realization
(implementation) of an object instance to its class definition. As pointed out in [4],
the inheritance mechanism imposes some special requirements on the criteria for
defining conformance relations in object-oriented systems.

The rest of the paper is organized as follows. In Section 2, we present a conformance
relation for object-oriented systems. This conformance relation was originally
proposed in [4]. Our presentation of this conformance relation will be given with a
slightly different notation. The possibility of defining other conformance relations for
object-oriented systems is also discussed. In Section 3, we propose a test case
derivation method for checking this conformance relation. Finally, in Section 4, we
give the conclusion and point out some future research directions.

2 A Conformance Relation for Object-Oriented Systems

An object class definition in an object-oriented system specifies a set of allowable
behaviors that may be adopted by object instances in that class. Thus a class definition
essentially serves as a common specification for the physical realizations or
implementations of all the object instances in that class. The purpose of this section
is to introduce a conformance relation between two class specifications and then to
extend the definition of this conformance relation to cover the case of conformance
between an implementation of an object instance and a class definition. The
possibility of defining other conformance relations will also be discussed in this
section.

2.1 Requirements on the Conformance Relation Imposed by Multiple
Inheritance

A number of models are available for describing behavior specifications. For object-
oriented systems, however, a specification model should be carefully selected for class
definitions such that the conformance relation defined based on this model will satisfy
the special requirements imposed by a multiple inheritance mechanism [4]. These
special requirements call be summarized as follows.

Let C1, C2 C n be n class definitions described in a specification model. We use
I N H (C 1 , C2 Cn) to represent the subclass definition which is obtained by

521

multiple inheritance from these n given class definitions. Further, let con denote a
conformance relation defined between two class definitions such that C con C' means
the class definition C conforms to the class definition C ' . Then a natural requirement
on the conformance relation can be informally stated as: INH(C1, C2 Cn) is
the "largest" subclass definition which conforms to each of the n class defmitions C1,
C2 Cn. The precise meaning of this requirement is given as the following
property.

Property 2.1: Requirements for conformance relation
(1) INH(C1, C2 Ca) con Ci, for i = 1, 2 n;
(2) If C con Ci, for i = 1, 2 n, then C con I N H (C b C2 Cn).

[End of property]

Let equ be a relation between two class definitions such that C equ C' iff C con C'
and C' con C. Then the following corollary follows directly from Property 2.1.

Corollary 2.2
If C1 equ C2 equ ...equ Cn, then INH(C1, C2 Ca) equ Ci, for i =1, 2 n.

[End of corollary]

The intuitive explanation of this corollary is that if the class definitions C1, C2
Cn specify n sets of equivalent behaviors, then the set of behaviors specified by
INH(C1, C2 Cn) is equivalent to each of those n sets of behaviors.

2.2 Conformance between Two Class Specifications

To ensure that our conformance relation satisfies the requirements stated in Property
2.1 (and Corollary 2.2), we adopt a behavior specification model [4] which is a
modified version of the acceptance tree model [9, 10]. Throughout this paper, let L =

{ al, a2 an } be a set of observable actions (we do not consider internal actions).
L should be finite but sufficiently large to include all those actions that may be of
interest. Let P(L) denote the powerset of L, i.e. the set of all subsets of L . Then a
class specification which specifies the allowed behaviors is described in terms of a set
of pairs < t, At >, where t is a sequence of actions taken from L and At is a subset
of P(L) . An element A of At is a subset of L and represents a state in which an
object instance of the class may be after it has executed the sequence t of actions, and
in which the instance object can only accept the actions in A. As such, A t gives the
set of all possible states in which an object instance may be after the execution of the
sequence t of actions. Therefore, this specification model is non-deterministic.

The conformance relation based on this specification model, denoted as--<A
throughout the paper, was first proposed in [4] and later further generalized to the

constraint relation (-<C) in [3] where an action is allowed to have input and output
parameters.

522

Definition 2.3
Let S = { St , $2 Sm } andS ' = {SI', $2', Sk'} be two subsets of
P(L). Then we say that

S' covers S iff for each Si ~ S, there exists an Sj' ~ S', such that Si c_ Sj'.
[End of definition]

Definition 2.4: -<A
Given two class specifications C = {< t, A t > } and C' = {< t, At '> }. We say

that C conforms to C', written C <A C', iff for each action sequence t, if there is a

< t, At > ~ C, then there exists a < t, At '> ~ C', such that At' covers At.
[End of definition]

It is easy to prove that <A is a preorder, i.e., a reflective and transitive relation. So

we can define a conformance equivalence relation, denoted as =A, as follows.

Definition 2.5: --A
Given two classes definitions C and C'. We say that C and C' are conformance

equivalent, written C --A C', iff C <A C' and C' <A C.
[End of definition]

According to Property 2.1, for the conformance relation -<A, INH(C1, C2 Cn),
the multiple inheritance of the class definitions C1, C2 Cn, should be the

"largest" class definition which conforms to (-<A) each of its n superclasses C1, C2,
.... Cn. The following theorem shows how to calculate INH(C1, C2 Cn) under
our specification model.

Theorem 2.6: Derivation of inheritance in respect to -<A
For a given set of class definitions

C i = {< t , A~ >}, i = 1 , 2 n,
multiple inheritance INH(C1, C2 Cn) in respect to the conformance relation

<A of Defmition 2.4 can be defined as follows:
INH(C1, C2 Cn)

= { < t , A t > l < t , A i t > ~ Ci f o r i = 1, 2,...n, and

At = { At N A 2 f l . . . f l A n I A i ~ A i t , i = 1, 2,...n} }.
This definition satisfies the Property 2.1.

[End of theorem]
The proof of this theorem is omitted since it is easy to prove that the so-defined

INH(CI , C2 Cn) is really the "largest" class definition which conforms to (--<A)
each of the given class definitions C1, C2 Cn. It should be noted that the
multiple inheritance INH(Cb C2 Cn) of a given set of class definitions C1,
C2 Cn is unique under the conformance equivalence relation of Definition 2.5.

523

2 .3 Conformance of an Object Instance Implementation to a Class
Def init ion

For a given class definition C and a given object instance implementation O, the
conformance of O to C is essentially the conformance of C' to C, where C' is an
imagined specification which specifies a set of behaviors exactly implemented by the

given implementation O. Therefore, the definition of the conformance relation <A can

be extended such that <--A is defined not only between two class definitions, but also
between an implementation of an object instance and a class definition. We say that O

conforms to C, written as O <A C, iff C ' <A C, where C ' is the imagined
specification.

2.4 Other Possible Conformance Relations

Under our specification model, the conformance relation <--A and the trace preorder <--T
are so far the only two relations known to satisfy the requirements stated in Property

2.1 (and Corollary 2.2). However, the trace preorder --<T and its induced trace

equivalence =T are often criticized for being too weak in the sense that they
sometimes identify too many specifications which should be distinguished [12]. This

is the reason that, in this paper, we choose <A as the conformance relation for object-
oriented systems.

It should be noted that there may be other conformance relations suitable for object-
oriented systems. In fact, Property 2.1 implies that, for a given relation, if we can
define an inheritance semantics such that those requirements are satisfied, then the
given relation can be used as a conformance relation for the object-oriented systems
with that defined inheritance semantics. In one recent work [15], it has been proved
that two given behavior specifications, described under the acceptance graph model or
the label transition system model, can be merged to give a new behavior specification
which satisfies the extension relation [5] with respect to each of the two given
specifications. It can be shown that the requirements of Property 2.1 (and Corollary
2.2) are satisfied if that merging operation is taken as the inheritance semantics and
the extension relation as the conformance relation. Therefore, the merging operation
gives us another view of multiple inheritance.

3 T h e Tes t ing o f the C o n f o r m a n c e Re la t ion --<A

We have seen in Section 2.3 that, for an object instance implementation O and a

given class definition C , O <A C, iff C ' <A C, where C ' is an imagined
specification which specifies a set of behaviors exactly implemented by the given
implementation O. In black-box testing, however, the implementation O is treated as

a black-box and therefore C' is unknown. As such the checking whether O <A C
should be based on the experimental observations from O instead of C'.

524

3.1 Testing Assumptions

There has been much work reported in the literature on testing distributed systems.
The theories and methods developed for testing nondeterministic systems [5, 6, 7, 8]
usually assume that :

(A1) the "reset" function is correctly implemented, which guarantees that the
implementation O, also called the implementation under test (IUT), can be
brought back to its initial state from any other state; and

(A2) the IUT exhibits certain complete testing assumption, such that when a trace of
actions is repeatedly applied to the IUT for a number of times, all the different
paths with the same trace will be exercised at least once.

Many known implementation relations, such as failure preorder, testing equivalence
and conformance of [5, 6, 7] have been proved to be testable under these assumptions

[5, 6, 7, 8]. However, the relation <A is not testable under the same assumptions, as
demonstrated by the following counter example.

Example 3.1
Consider the following class specification C and two object implementations O1 and

0 2 as shown in Figure 1. Obviously O1 <A C, while 0 2 SAC. However, under
the usual assumptions (A1) and (A2), it is not difficult to see that O1 and 02 , when
disposed as black boxes, will result in the same set of experimental observations. This
implies that, based on this experimental observation set, we can neither accept nor

reject O1 <A C and 0 2 <A C.

C

conforms to ~ '

Ol J

a b

Fig. 1

b

~ s not conform to

02

[End of example]

This implies that some stronger assumptions should be made if we want to test <A.
For this purpose, we replace assumption (A1) by the following so-called copying

525

assumption (AI').

(AI') The observer has the ability to take multiple copies of the object under test
(OUT) at any stage of the test in order to independently experiment on each of
these copies at a time.

Assumption (AI') has been adopted in certain testing methods [1, 13], where it was
argued that this copying feature can be realized, in some situations, by a simple core
dump procedure, and that it is applied in several kinds of fault tolerant systems. With
assumption (AI'), we do not have to assume the correct implementation of the "reset"
function, since this can be achieved with the assumed copying ability. As we will see
in the following, under assumptions (AI') and (A2), we can develop test cases for

verifying <A.

3.2 Testing Language

The copying assumption (AI') actually allows us to use a testing language with the
following syntax [cf. 13]:

e ::=- stop l a ; e I (e~ e .)

where

(1) stop has the same meaning as in Lotos [11];

(2) a ;e (with a ,r- L) describes a test consisting of first applying the action a

and in case of success proceeding with e;

(3) (e l en) is a test which requires that n copies of the current state of the

IUT are taken allowing all the tests e l e n to be performed
independently on the same state.

A test case can be formed by combining several constructs of the above three basic
types. Any test case E used for checking a designated conformance relation (such as

<A) should be associated with a set V of allowable observations by which the

experimenter can decide whether the implementation under test passes E based on the
actual observations of the IUT to which E is applied. We use (E, V) to denote the
test case E and its asscr set V of allowable observations.

3.3 Test Derivation for <--A

Here we propose a test derivation method for testing the conformance relation <A-
This test derivation method will allow us to generate, from a given class definition C,
a set of test cases which, when applied to an object instance implementation O, can

check whether O <A C.

526

Let C = { < t, A t > } be a given class specification. For a < t, A t > ~ C, we
construct a test case (Et, Vt) where E t is a test of the following format

and
E t = t;(al;stop,

V t -- A t

a2;stop an;stop), a l e L , i = 1 , 2 n

is the set of allowed observations when Et is applied to an implementation under test.

Suppose O is the implementation of an object instance under test. The test execution
of O with Et, i.e. a test run of E t with O, goes in two phases:

Phase 1: we first experiment on O, in sequence, the actions in trace t . If this
sequence of actions are successfully experimented, i.e. O = t=> O', then
goto phase 2; otherwise the result of this test run is inconclusive and we
have to try a new test mn.

Phase 2: n copies of O ' are made. The i-th copy is experimented with a i , for i =
1, 2 n. we defme the observation of this test run as

B = { a i I if i-th copy of O' accepts a i }
i.e., B consists of the actions that are acceptable by O after it executed the
sequence of actions t.

Under the complete testing assumption (A2), we should be able to get, after a number
of test runs of E t with O, a set of all the actual experimental observations, which we
write as

R t (O) = { B I each B is an observation of a test run of E t with O }.

Definit ion 3.2
Let (Et, Vt) be a test case and O an implementation of an object instance. We define
that
O passes E t iff Vt covers Rt(O) .

[End of definition]

Then for the given class specification C = { < t, At > }, a test suite T S c , i.e. a set

of test cases for checking the conformance relation <A, can be constructed as follows:

T S c = { (Et , At) I for each < t, A t > ~ C }.

The following theorem states that the so-constructed test suite checks that an object O
conforms to the class definition C.

527

Theorem 3.3

O < A C iff for each(Et , A t) ~ T S c , Opasses E t
[End of theorem]

It should be noted that when a given class definition C specifies a set of infinite
behaviors, the so-constructed test suite T S c is also infinite, that is, T S c contains
infinite number of test cases and therefore is not suitable for practical testing. A test
derivation method was proposed in [8] which can be used to generate a f'mite test suite
from a specification defining a set of infinite behaviors in terms of a (non-
deterministic) finite state machine. The generated finite test suite can then be used,
under certain appropriate assumptions, to check if an implementation satisfies the
failure preorder in respect to the given specification. We believe that, following a
similar approach to [8]~. we Can also develop a test derivation method which will allow
us to generate afinite test suite T S c from an infinite class definition which can be
modeled by a finite state machine, and the finite test suite T S c allows us to test if an

object implementation satisfies the conformance relation <A in respect to the given

class definition.

4 C o n c l u s i o n s

We have proposed, in this paper, a conformance testing method for object-oriented
software systems. The conformance relation that can be tested by this method is based
on a modified version of the acceptance tree model [9, 10] and takes into account the
special requirements imposed by the inheritance mechanism -- one of the primary
strengths of the object-oriented paradigm. Under the complete testing and copying
assumptions, the proposed method allows us to test whether an object instance
implementation conforms to its class specification. Therefore this testing method
applies at the unit test,ing level rather than at the system testing level.

How to test object-oriented software systems is a rather new research area. A lot of
questions still remain open. One interesting question would be "how to reuse tests".
Inheritance allows us to reuse the (behavior) specification of one object class in
another object class specification. We believe that such a "reuse" relationship between
two object classes also exists at the testing level, namely certain tests derived for one
object class can also be reused as (part of) the tests of another object class. Actually,
some work has beent reported on the reuse of tests based on the deterministic
input/output finite state machine model [14, 16]. In [16], it has been shown that the
test suite generated from one t'mite state machine can be reused as a starting point for
the incremental generation of a test suite for another t-mite state machine, provided that
the latter has been obtained from the former by adding additional transitions. The
conformance relation considered there is the trace extension which is one of the
strongest relations for comparing deterministic finite state machines. It has also been
pointed out in [14] that the test suites generated from two given f'mite state machines
can be reused in the generation of the test suite for a third finite state machine which
is the composition of the first two finite state machines, under the assumption that
the first two finite state machines have no common behaviors.

528

Finally, we point out that it is also important to study the requirements imposed on
testing by other object-oriented programming features, such as polymorphism and
dynamic binding.

Acknowledgment: Special thanks go to Chen Wu, with whom the authors have
had many useful discussions.

References

1. S. Abramsky: Observation equivalence as a testing equivalence, Theoretical
Computer Science 53 (1987) 225-241.

2. A special issue on object-oriented design, Communication of the ACM 33 (9)
(1990)

3. G. v. Bochmann and R. Gotzein: Specialization of object behaviors and
requirement specifications, Technical Report (Draft) D6partement d'informatique
et de recherche op6rationelle, Universit6 de Montr6al (1992).

4. G.v. Bochmann: On the specialization of object behaviors, in J.Palsberg &
M.LSchwartzbach (eds.), Types, Inheritance and Assignments, a collection of
position papers from the ECOOP'91 workshop W5, Geneva, Switzerland (July
1991).

5. E. Brinksma, et al: Lotos specification, their implementation and their tests, in
B. Sarakaya and G. v. Bochmann (eds.), Protocol Specification, Testing, and
Verification VI, North Holland, Amsterdam (1987) 349-360.

6. E. Brinksma: A theory for the derivation of tests, in S. Aggarwal (ed.), Protocol
Specification, Testing, and Verification VIII, North Holland, Amsterdam (1988)
63-74.

7. E. Brinksma: A formal approach to testing distributed systems, draft version.
8. S. Fujiwara and G.v. Bochmann: Testing non-deterministic finite state machines

with fault coverage, Proc. 4th International Workshop on Protocol Test Systems,
Leidschendam, the Netherlands (October 15-17, 1991).

9. M. Hennessy: Acceptance trees, J. ACM 32 (4) (1985) 896-928.
10. M. Hennessy: Algebraic theory of processes, The M1T Press (1988).
11. ISO/DIS/8807, LOTOS - A formal description technique based on the temporal

ordering of observational behavior, (1987).
12. R. Langerak: A testing theory for LOTOS using deadlock detection, in E.

Brinksma, G. Scollo and C. A. Vissers (eds.), Protocol Specification, Testing,
and Verification IX, North Holland, Amsterdam (1990) 87-98.

13. K. G. Larsen and A. Skou: Bisimulation through probabilistic testing, R88-29,
Department of Math. and Compt. Sci., Aalborg University Center (1988).

14. E. H. Htite: G6n6ration de tests pour le service de communication personnalis6,
M6moire de maltrise ~s sciences (M.Sc.), D6partement d'informatique et de
recherche op6rationelle, Universit6 de Montr6al, 1992.

15. F. Kendek and G.v. Bochmann: Merging Specification Behaviors, submitted for
publication, 1992.

16. M. Yao, A. Petrenko and G.v. Bochmann: Conformance Testing of Protocol
Machines without Reset, submitted for publication, 1992.

