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Abstract. Although the object-oriented paradigm has been gaining wide 
popularity in recent years, little work has been done on how to test object- 
oriented software systems. We believe that many special programming 
features found in the object-oriented paradigm will also play important roles 
during the testing phase. In this paper, we propose a conformance testing 
method for object-oriented software systems. The conformance relation that 
can be tested by this method is based on a modified version of the 
acceptance tree model and takes into account the special requirements 
imposed by the inheritance mechanism -- which we believe is the most 
important feature provided by the object-oriented paradigm. The proposed 
method allows us to test, under certain assumptions, whether an object 
instance implementation conforms to a given class specification by 
applying to the implementation the test cases derived from the given class 
specification. 

1 I n t r o d u c t i o n  

With the increasing complexity of software systems, stepwise refinement is becoming 
an important methodology for software development. The stepwise refinement 
approach starts from a formal specification of the functionality of the system on a 
high level of abstraction. This abstract initial specification is then transformed in a 
number of successive refinement or implementation steps, where each step produces a 
new specification reflecting certain design decisions. The transformation process 
terminates when a physical realization of the system is obtained. With such an 
approach, implementation and specification only have relative meanings. A refinement 
produced in an intermediate step is an implementation of the refinement in the 
previous step, while it also serves as a specification for the refinement in the next 
step. The stepwise development process must be such that the final realization, as 
well as the intermediate refinements, conform to the initial specification. Certainly, 
some criterion should be designated beforehand for specifying the meaning and 
conditions of "conform". Actually, there have been many criteria proposed for defining 
possible conformance relationships, such as trace preorder, reduction, extension and 
conformance of [5, 6, 7],failure of [9, 10], and failure trace and generalized failure of 
[12]. These relations have been proposed largely for conformance testing of distributed 
systems, particularly of communication protocols. 

* This research was supported by a grant from the Canadian Institute for Tele- 
communications Research under the NCE program of the Government of Canada. 
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The object-oriented paradigm, which has been gaining wide popularity in recent years, 
directly supports the stepwise refinement approach. In an object-oriented system, the 
components called objects are usually organized into object classes. An object class is 
a set of objects which are called its instances [2]. An object class definition specifies a 
set of allowable behaviors that each object instance in that class may exhibit. 
Furthermore, the inheritance mechanism allows one to define a new class (called 
subclass) from existing classes (called superclasses). The subclass inherits a set of 
nonconflicting behaviors specified by its superclasses. As such, the subclass is a 
refinement of each superclass in the sense that certain implementation decisions -- the 
elimination of conflicting behaviors, have been made in the subclass. Thus the 
conformance problem also arises in object-oriented systems, such as the conformance 
of a subclass to its superclasses, and the conformance of a physical realization 
(implementation) of an object instance to its class definition. As pointed out in [4], 
the inheritance mechanism imposes some special requirements on the criteria for 
defining conformance relations in object-oriented systems. 

The rest of the paper is organized as follows. In Section 2, we present a conformance 
relation for object-oriented systems. This conformance relation was originally 
proposed in [4]. Our presentation of this conformance relation will be given with a 
slightly different notation. The possibility of defining other conformance relations for 
object-oriented systems is also discussed. In Section 3, we propose a test case 
derivation method for checking this conformance relation. Finally, in Section 4, we 
give the conclusion and point out some future research directions. 

2 A Conformance Relation for Object-Oriented Systems 

An object class definition in an object-oriented system specifies a set of allowable 
behaviors that may be adopted by object instances in that class. Thus a class definition 
essentially serves as a common specification for the physical realizations or 
implementations of all the object instances in that class. The purpose of this section 
is to introduce a conformance relation between two class specifications and then to 
extend the definition of this conformance relation to cover the case of conformance 
between an implementation of an object instance and a class definition. The 
possibility of defining other conformance relations will also be discussed in this 
section. 

2.1 Requirements on the Conformance Relation Imposed by Multiple 
Inheritance 

A number of models are available for describing behavior specifications. For object- 
oriented systems, however, a specification model should be carefully selected for class 
definitions such that the conformance relation defined based on this model will satisfy 
the special requirements imposed by a multiple inheritance mechanism [4]. These 
special requirements call be summarized as follows. 

Let C1, C2 ..... C n be n class definitions described in a specification model. We use 
I N H ( C 1 ,  C2 ..... Cn) to represent the subclass definition which is obtained by 
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multiple inheritance from these n given class definitions. Further, let con denote a 
conformance relation defined between two class definitions such that C con C' means 
the class definition C conforms to the class definition C ' .  Then a natural requirement 
on the conformance relation can be informally stated as: INH(C1,  C2 ..... Cn) is 
the "largest" subclass definition which conforms to each of the n class defmitions C1, 
C2 ..... Cn. The precise meaning of this requirement is given as the following 
property. 

Property 2.1: Requirements for conformance relation 
(1) INH(C1,  C2 ..... Ca) con Ci, for i = 1, 2 ..... n; 
(2) If C con Ci, for i = 1, 2 ..... n, then C con I N H ( C b  C2 ..... Cn). 

[End of property] 

Let equ be a relation between two class definitions such that C equ C' iff C con C' 
and C' con C. Then the following corollary follows directly from Property 2.1. 

Corollary 2.2 
If C1 equ C2 equ ...equ Cn, then INH(C1,  C2 ..... Ca) equ Ci, for i =1, 2 ..... n. 

[End of corollary] 

The intuitive explanation of this corollary is that if the class definitions C1, C2 ..... 
Cn specify n sets of equivalent behaviors, then the set of behaviors specified by 
INH(C1, C2 ..... Cn) is equivalent to each of those n sets of behaviors. 

2.2 Conformance between Two Class Specifications 

To ensure that our conformance relation satisfies the requirements stated in Property 
2.1 (and Corollary 2.2), we adopt a behavior specification model [4] which is a 
modified version of the acceptance tree model [9, 10]. Throughout this paper, let L = 

{ al,  a2 ..... an } be a set of observable actions (we do not consider internal actions). 
L should be finite but sufficiently large to include all those actions that may be of 
interest. Let P(L)  denote the powerset of L, i.e. the set of all subsets of L .  Then a 
class specification which specifies the allowed behaviors is described in terms of a set 
of pairs < t, At >, where t is a sequence of actions taken from L and At is a subset 
of P(L) .  An element A of At  is a subset of L and represents a state in which an 
object instance of the class may be after it has executed the sequence t of actions, and 
in which the instance object can only accept the actions in A. As such, A t gives the 
set of all possible states in which an object instance may be after the execution of the 
sequence t of actions. Therefore, this specification model is non-deterministic. 

The conformance relation based on this specification model, denoted as--<A 
throughout the paper, was first proposed in [4] and later further generalized to the 

constraint relation (-<C) in [3] where an action is allowed to have input and output 
parameters. 
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Definition 2.3 
Let S = { St ,  $2 . . . . .  Sm } andS '  = {SI', $2', .... Sk'} be two subsets of 
P(L).  Then we say that 

S' covers S iff for each Si ~ S, there exists an Sj' ~ S', such that Si c_ Sj'. 
[End of definition] 

Definition 2.4: -<A 
Given two class specifications C = {< t, A t > }  and C' = {< t, At '>  }. We say 

that C conforms to C', written C <A C', iff for each action sequence t, if there is a 

< t, At  > ~ C, then there exists a < t, At '> ~ C', such that At'  covers At. 
[End of definition] 

It is easy to prove that <A is a preorder, i.e., a reflective and transitive relation. So 

we can define a conformance equivalence relation, denoted as =A, as follows. 

Definition 2.5: --A 
Given two classes definitions C and C'. We say that C and C' are conformance 

equivalent, written C --A C', iff C <A C' and C' <A C. 
[End of definition] 

According to Property 2.1, for the conformance relation -<A, INH(C1, C2 ..... Cn), 
the multiple inheritance of the class definitions C1, C2 ..... Cn, should be the 

"largest" class definition which conforms to (-<A) each of its n superclasses C1, C2, 
.... Cn. The following theorem shows how to calculate INH(C1, C2 ..... Cn) under 
our specification model. 

Theorem 2.6: Derivation of inheritance in respect to -<A 
For a given set of class definitions 

C i =  {< t ,  A~ >}, i = 1 , 2  ..... n, 
multiple inheritance INH(C1, C2 ..... Cn) in respect to the conformance relation 

<A of Defmition 2.4 can be defined as follows: 
INH(C1,  C2 ..... Cn) 

= {  < t ,  A t > l < t ,  A i t > ~  Ci f o r i =  1, 2,...n, and 

At = { At  N A 2 f l . . .  f l A n  I A i ~  A i t , i =  1, 2,...n} }. 
This definition satisfies the Property 2.1. 

[End of theorem] 
The proof of this theorem is omitted since it is easy to prove that the so-defined 

INH(CI ,  C2 ..... Cn) is really the "largest" class definition which conforms to (--<A) 
each of the given class definitions C1, C2 ..... Cn. It should be noted that the 
multiple inheritance INH(Cb C2 ..... Cn) of a given set of class definitions C1, 
C2 ..... Cn is unique under the conformance equivalence relation of Definition 2.5. 
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2 .3  Conformance of an Object Instance Implementation to a Class 
Def init ion 

For a given class definition C and a given object instance implementation O, the 
conformance of O to C is essentially the conformance of C' to C, where C' is an 
imagined specification which specifies a set of behaviors exactly implemented by the 

given implementation O. Therefore, the definition of the conformance relation <A can 

be extended such that <--A is defined not only between two class definitions, but also 
between an implementation of an object instance and a class definition. We say that O 

conforms to C,  written as O <A C,  iff C '  <A C,  where C '  is the imagined 
specification. 

2.4 Other Possible Conformance Relations 

Under our specification model, the conformance relation <--A and the trace preorder <--T 
are so far the only two relations known to satisfy the requirements stated in Property 

2.1 (and Corollary 2.2). However, the trace preorder --<T and its induced trace 

equivalence =T are often criticized for being too weak in the sense that they 
sometimes identify too many specifications which should be distinguished [12]. This 

is the reason that, in this paper, we choose <A as the conformance relation for object- 
oriented systems. 

It should be noted that there may be other conformance relations suitable for object- 
oriented systems. In fact, Property 2.1 implies that, for a given relation, if we can 
define an inheritance semantics such that those requirements are satisfied, then the 
given relation can be used as a conformance relation for the object-oriented systems 
with that defined inheritance semantics. In one recent work [15], it has been proved 
that two given behavior specifications, described under the acceptance graph model or 
the label transition system model, can be merged to give a new behavior specification 
which satisfies the extension relation [5] with respect to each of the two given 
specifications. It can be shown that the requirements of Property 2.1 (and Corollary 
2.2) are satisfied if that merging operation is taken as the inheritance semantics and 
the extension relation as the conformance relation. Therefore, the merging operation 
gives us another view of multiple inheritance. 

3 T h e  Tes t ing  o f  the C o n f o r m a n c e  Re la t ion  --<A 

We have seen in Section 2.3 that, for an object instance implementation O and a 

given class definition C ,  O <A C,  iff C '  <A C,  where C '  is an imagined 
specification which specifies a set of behaviors exactly implemented by the given 
implementation O. In black-box testing, however, the implementation O is treated as 

a black-box and therefore C' is unknown. As such the checking whether O <A C 
should be based on the experimental observations from O instead of C'. 
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3.1 Testing Assumptions 

There has been much work reported in the literature on testing distributed systems. 
The theories and methods developed for testing nondeterministic systems [5, 6, 7, 8] 
usually assume that : 

(A1) the "reset" function is correctly implemented, which guarantees that the 
implementation O, also called the implementation under test (IUT), can be 
brought back to its initial state from any other state; and 

(A2) the IUT exhibits certain complete testing assumption, such that when a trace of 
actions is repeatedly applied to the IUT for a number of times, all the different 
paths with the same trace will be exercised at least once. 

Many known implementation relations, such as failure preorder, testing equivalence 
and conformance of [5, 6, 7] have been proved to be testable under these assumptions 

[5, 6, 7, 8]. However, the relation <A is not testable under the same assumptions, as 
demonstrated by the following counter example. 

Example 3.1 
Consider the following class specification C and two object implementations O1 and 

0 2  as shown in Figure 1. Obviously O1 <A C, while 0 2  SAC.  However, under 
the usual assumptions (A1) and (A2), it is not difficult to see that O1 and 02 ,  when 
disposed as black boxes, will result in the same set of experimental observations. This 
implies that, based on this experimental observation set, we can neither accept nor 

reject O1 <A C and 0 2  <A C. 

C 

conforms to ~ '  

Ol J 

a b 

Fig. 1 

b 

~ s not conform to 

02 

[End of example] 

This implies that some stronger assumptions should be made if we want to test <A. 
For this purpose, we replace assumption (A1) by the following so-called copying 
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assumption (AI'). 

(AI') The observer has the ability to take multiple copies of the object under test 
(OUT) at any stage of the test in order to independently experiment on each of 
these copies at a time. 

Assumption (AI') has been adopted in certain testing methods [1, 13], where it was 
argued that this copying feature can be realized, in some situations, by a simple core 
dump procedure, and that it is applied in several kinds of fault tolerant systems. With 
assumption (AI'), we do not have to assume the correct implementation of the "reset" 
function, since this can be achieved with the assumed copying ability. As we will see 
in the following, under assumptions (AI') and (A2), we can develop test cases for 

verifying <A. 

3.2 Testing Language 

The copying assumption (AI') actually allows us to use a testing language with the 
following syntax [cf. 13]: 

e ::=- stop l a ; e  I (e~ . . . . .  e . )  

where 

(1) stop has the same meaning as in Lotos [11]; 

(2) a ;e  (with a ,r- L) describes a test consisting of first applying the action a 

and in case of success proceeding with e;  

(3) ( e l  . . . . .  en) is a test which requires that n copies of the current state of the 

IUT are taken allowing all the tests e l  . . . . .  e n  to be performed 
independently on the same state. 

A test case can be formed by combining several constructs of the above three basic 
types. Any test case E used for checking a designated conformance relation (such as 

<A) should be associated with a set V of allowable observations by which the 

experimenter can decide whether the implementation under test passes E based on the 
actual observations of the IUT to which E is applied. We use (E,  V)  to denote the 
test case E and its asscr set V of allowable observations. 

3.3 Test Derivation for <--A 

Here we propose a test derivation method for testing the conformance relation <A- 
This test derivation method will allow us to generate, from a given class definition C, 
a set of test cases which, when applied to an object instance implementation O, can 

check whether O <A C. 
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Let C = { < t, A t  > } be a given class specification. For a < t, A t  > ~ C, we 
construct a test case (Et,  Vt) where E t  is a test of the following format 

and 
E t  = t;(al;stop, 

V t -- A t 

a2;stop . . . . .  an;stop), a l e  L ,  i = 1 , 2  ..... n 

is the set of allowed observations when Et  is applied to an implementation under test. 

Suppose O is the implementation of an object instance under test. The test execution 
of O with Et, i.e. a test run of E t  with O, goes in two phases: 

Phase 1: we first experiment on O,  in sequence, the actions in trace t .  If this 
sequence of actions are successfully experimented, i.e. O = t=>  O', then 
goto phase 2; otherwise the result of this test run is inconclusive and we 
have to try a new test mn. 

Phase 2: n copies of O '  are made. The i-th copy is experimented with a i ,  for i = 
1, 2 ..... n. we defme the observation of this test run as 

B = { a i  I if i-th copy of O'  accepts a i  } 
i.e., B consists of the actions that are acceptable by O after it executed the 
sequence of actions t. 

Under the complete testing assumption (A2), we should be able to get, after a number 
of test runs of E t  with O, a set of all the actual experimental observations, which we 
write as 

R t (O)  = { B I each B is an observation of a test run of E t  with O }. 

Definit ion 3.2 
Let (Et,  Vt) be a test case and O an implementation of an object instance. We define 
that 
O passes E t  iff Vt  covers Rt(O) .  

[End of definition] 

Then for the given class specification C = { < t, At  > }, a test suite T S c ,  i.e. a set 

of test cases for checking the conformance relation <A, can be constructed as follows: 

T S c  = { (Et ,  At )  I for each < t, A t > ~ C }. 

The following theorem states that the so-constructed test suite checks that an object O 
conforms to the class definition C. 
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Theorem 3.3 

O < A C  iff for each(Et ,  A t ) ~  T S c ,  Opasses  E t 
[End of theorem] 

It should be noted that when a given class definition C specifies a set of infinite 
behaviors, the so-constructed test suite T S c  is also infinite, that is, T S c  contains 
infinite number of test cases and therefore is not suitable for practical testing. A test 
derivation method was proposed in [8] which can be used to generate a f'mite test suite 
from a specification defining a set of infinite behaviors in terms of a (non- 
deterministic) finite state machine. The generated finite test suite can then be used, 
under certain appropriate assumptions, to check if an implementation satisfies the 
failure preorder in respect to the given specification. We believe that, following a 
similar approach to [8]~. we Can also develop a test derivation method which will allow 
us to generate afinite test suite T S c  from an infinite class definition which can be 
modeled by a finite state machine, and the finite test suite T S c  allows us to test if an 

object implementation satisfies the conformance relation <A in respect to the given 

class definition. 

4 C o n c l u s i o n s  

We have proposed, in this paper, a conformance testing method for object-oriented 
software systems. The conformance relation that can be tested by this method is based 
on a modified version of the acceptance tree model [9, 10] and takes into account the 
special requirements imposed by the inheritance mechanism -- one of the primary 
strengths of the object-oriented paradigm. Under the complete testing and copying 
assumptions, the proposed method allows us to test whether an object instance 
implementation conforms to its class specification. Therefore this testing method 
applies at the unit test,ing level rather than at the system testing level. 

How to test object-oriented software systems is a rather new research area. A lot of 
questions still remain open. One interesting question would be "how to reuse tests". 
Inheritance allows us to reuse the (behavior) specification of one object class in 
another object class specification. We believe that such a "reuse" relationship between 
two object classes also exists at the testing level, namely certain tests derived for one 
object class can also be reused as (part of) the tests of another object class. Actually, 
some work has beent reported on the reuse of tests based on the deterministic 
input/output finite state machine model [14, 16]. In [16], it has been shown that the 
test suite generated from one t'mite state machine can be reused as a starting point for 
the incremental generation of a test suite for another t-mite state machine, provided that 
the latter has been obtained from the former by adding additional transitions. The 
conformance relation considered there is the trace extension which is one of the 
strongest relations for comparing deterministic finite state machines. It has also been 
pointed out in [14] that the test suites generated from two given f'mite state machines 
can be reused in the generation of the test suite for a third finite state machine which 
is the composition of the first two finite state machines, under the assumption that 
the first two finite state machines have no common behaviors. 
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Finally, we point out that it is also important to study the requirements imposed on 
testing by other object-oriented programming features, such as polymorphism and 
dynamic binding. 

Acknowledgment: Special thanks go to Chen Wu, with whom the authors have 
had many useful discussions. 
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